嵌入式系统底层软件结构模型建构与协同性分析嵌入式技术被广泛应用于信息家器、消费电子、交换机以及机器人等产品中,与通用计算机技术不同,嵌入式系统中计算机被置于应用环境内部特征不明显。系统对性能、体积、以及时间等有较高的要求。复杂的嵌入式系统面向特定应用环境,必须支持硬、软件裁减,适应系统对功能、成本以及功耗等要求。 引言 嵌入式技术被广泛应用于信息家器、消费电子、交换机以及机器人等产品中,与通用计算机技术不同,嵌入式系统中计算机被置于应用环境内部特征不明显。系统对性能、体积、以及时间等有较高的要求。复杂的嵌入式系统面向特定应用环境,必须支持硬、软件裁减,适应系统对功能、成本以及功耗等要求。 0.1 嵌入式系统与协同性 从信息传递的电特性过程分析,嵌入式系统特征表现为,计算机技术与电子技术紧密结合,难以分清特定的物理外观和功能,处理器与外设、存储器等之间的信息交换主要以电平信号的形式在IC 间直接进行。 从嵌入深度ED来看,信息交换在IC 间越直接、越多,嵌入深度就越大。 在设计实验系统模型(图1)时,充分考虑到软硬协同性,使其成为一个实验与研究完备平台。软硬件协同性问题涉及到协同性划分技术和协同性设计技术。协同性核心问题之一将涉及启动加载软件Bootloader、系统板级支持包BSP 以及嵌入式OS 之间融合和移植。协同性设计技术与系统功能、性能以及开发人员等因素相关,其核心内容为软硬件的协同描述、验证和综合提供一种集成环境。 ![]() 图 1. 嵌入式系统结构模型 0.2 没有操作系统OS 的嵌入式系统 0.2.1 系统特点 由于系统的性质、任务、成本等原因,没有操作系统支持的嵌入式系统将继续大量存在。这样的系统使用专用开发工具(如:仿真在线调试器ICE 等)。通过串口或并口在PC机上联机调试程序,具有源代码调试功能。 0.2.2 局限性分析 没有OS 的系统按照“指令顺序执行+中断”的模式运行。在作者参与的早期程控交换机系统设计中,需要对不同端口量级(从10 到1000 等)的分机进行实时处理。通过建立交换系统核心硬件层(存储体、第一层I/O 等)以及用户口地址等程序;然后建立定时和非定时事件、过程以及任务中断链和任务表,应用中断对任务以及过程调度。设计人员要完成相当于部分操作系统功能的编写,导致软件结构复杂、工作量大尤其是重复劳动。 0.3 具有OS 的嵌入式系统 图1 的2 嵌入式系统就是具有嵌入式OS 的一种结构模型。引入嵌入式OS 可以面对多种嵌入式处理器环境(如:MPU、DSP、SOC 等)提供类同的API 接口,使基于OS 上的程序具有较好的移植性。从协同划分与设计技术出发,通过嵌入式软件的函数化、产品化能够促进分工专业化,减少重复劳动。 1. Bootloader/BSP 特性 Bootloader 与BSP 配合,通过初始化硬件设备、建立内存空间映射,“屏敝”硬件环境,为调用操作系统内核和应用程序运行作好准备。 1.1 Bootloader 特性与结构分析 Bootloader 是系统加电后首先运行的程序,主要依赖于硬件,建立一个通用版本几乎不可能。即使同一CPU,硬件稍作变化,Bootloader 也必须修改。建立良好的BootLoader 结构,为系统二次开发以及减轻BSP的开发难度、可移植提供有益帮助;同时,也是保护硬件平台设计知识产权的重要措施。 启动过程分单阶段(Single STage)和多阶段(Multi-Stage)。从协同性划分技术角度,设备初始化程序等通常放在stage 中,stage2 设置内核参数和调用,应具有可读性和可移植性。从固态存储设备上启动的Bootloader 大多都是两阶段的启动过程。Bootloader 的存贮体和分区:Flash/RAM/固态存贮器(图2);Flash 存储分区有连续和非连续两种方式。当系统需要多媒体等功能,用DOC(Disk ON Chip)技术解决大容量嵌入式OS 的存贮。 ![]() 图2. 空间分配结构示意图 责编:李玉琴 ![]() 著作权声明:畅享网文章著作权分属畅享网、网友和合作伙伴,部分非原创文章作者信息可能有所缺失,如需补充或修改请与我们联系,工作人员会在1个工作日内配合处理。 |
最新文章
|