浅谈智能手机应用市场的大数据挑战智能手机的革命已经改变了人们的生活。智能手机已经成了许多人生活中不可或缺的一部分,打电话早已远远不是手机唯一的功能。 智能手机的革命已经改变了人们的生活。智能手机已经成了许多人生活中不可或缺的一部分,打电话早已远远不是手机唯一的功能。智能手机所能完成的任务包罗万象:管理日程,联机游戏,观看电影,购物比价,寻找取款机… 手机应用领域取得了巨大的成功和极速的发展,然而新的问题也浮出了水面。应用市场中的应用数量太多了,几乎不可能有用户能将所有应用都从头到尾浏览一遍。举一个直观的例子——美国的Netflix有大约14,000部视频影片,超级市场通常会出售15,000至60,000件商品,而Google Play和iPhone App Store上都已经有超过800,000个应用了!更何况,站在超市货架之前,我们可以一次性看完几十种商品;但在应用市场,我们一次最多也只能在手机屏幕上看到10多个应用。 应用市场需要进一步提升自己的功能,帮助用户寻找到自己所需要的应用。特别是,应用市场应该找到一个更好的方式界定应用的质量,找出那些抄袭他人的应用,并依据每个人不同的品味和喜好提供不同的应用市场浏览体验。为了实现这些需求,我们需要通过技术手段来实现个性化推荐,搜索结果调整,意见领袖跟踪等功能。 好消息:智能手机为应用商店提供了丰富的数据来源 应用商店追踪用户信息的方式有点类似于超市追踪消费者购买习惯的方法。在顾客从超市货架上拿下一包麦片时,超市会去追踪并记录其他相关数据,比如这位顾客是否还观察并购买了其他麦片(拿到应用市场的例子中来,“麦片”就成了一个个的应用),顾客食用麦片的频率如何,有多喜欢该品种的麦片,向多少朋友推荐了这种麦片,是否有其他品种的麦片更受这种顾客的青睐… 在智能手机的帮助下,应用商店相比超市拥有更加广泛的数据来源,比如用户的居住地,用户朋友和同事的应用消费习惯,用户感兴趣的内容,用户的搜索历史等等…更重要的是,应用市场可以立即将这些数据付诸使用,决定将哪些“商品”放置在黄金展示位上,在用户浏览应用商店时就做出即时的调整。 “大数据”技术在应用市场中的使用可以显著地提升应用市场提供定制化用户体验的能力。例如,某个住在纽约的用户刚刚来到伦敦,那他很可能对“伦敦旅游指南”和“酒店预定”等应用拥有特别的兴趣。另一个刚在Facebook上发布了尼克斯队最新视频的用户,“尼克斯队”官方应用很可能会吸引到他的眼球。喜欢听Coldplay乐队歌曲的用户或许会希望下载Coldplay的主题壁纸。假如应用市场拥有高效的数据分析机制和正确的数据分析结果应用机制,那它就可以借助动态的大数据来预测用户未来的购买行为和选择倾向。 坏消息:数据的收集、管理与处理是个难题 上千万智能手机用户所创造出来的数据是海量且高速增长的。传统的数据处理技术在这种场景下往往会力不从心。不仅如此,这些数据的来源也是五花八门,从应用市场到社交网络,从浏览器数据到基于位置的数据,从设备上存储的内容到搜索的关键字,多样化的数据来源使数据分析的难度进一步提高。传统数据处理技术是无法应付这一类高容量、高差异化、高速更新的“三高”数据的。只有以往一般用于处理网站分析、医药研究等领域问题的“大数据”技术,才是被设计用来收集、管理并处理这类数据的利器。
责编:李红燕 微信扫一扫实时了解行业动态 微信扫一扫分享本文给好友 著作权声明:畅享网文章著作权分属畅享网、网友和合作伙伴,部分非原创文章作者信息可能有所缺失,如需补充或修改请与我们联系,工作人员会在1个工作日内配合处理。 |
最新文章
|