|
华为HPC存储解决方案 助力石油勘探工业石油勘探过程产生的大数据有自己独特的“4V”特征,针对石油行业的特点和需求,华为提出了石油勘探HPC解决方案. 能源行业迈入大数据时代 随着数据总量的持续增长和急速膨胀,大数据时代已经来临,石油、电力等能源细分行业纷纷拉开了大数据开发应用的序幕。如何从海量数据中高效获取信息,有效地深加工并最终得到有用数据是能源企业涉足大数据的目的。 对石油行业来说,众多企业正在把更多的新技术应用于战略决策、科技研发、生产经营和安全环保等各个领域,目的是为了从大数据资源中挖掘更多的财富和价值。大数据应用是石油行业信息化深入、IT与业务深度融合的必然趋势,在我国石油石化行业应用的前景将越来越广阔。随着石油储备的逐步减少,石油石化行业产业链中的勘探、开发难度日益增大, 信息化的成熟度已经成为影响行业增长幅度的首要因素。精准、快速的地质勘测成为世界能源巨头们倚重的核心竞争力之一,其中高性能计算技术和大数据技术的应用是关键因素。 油气勘探海量数据处理需要高性能计算 目前在石油勘探中最常用的是地球物理方法。地球物理方法是使用现代物理方法进行地质勘探的方法,包括电法、磁法、重力法、放射性法、地震波法等,其中以地震波法最为重要。为了了解和模拟出地下数千米的地质构造,通过地震波反射方式来收集海量数据,一般二维数据可达1~2TB,三维数据可高达几百TB甚至PB级, 然后进行大量的密集计算和模拟,计算结果出来后还要转换成直观的可视画面,方便专家对数据进行解释,为油气钻井定位提供参考。因此,这些海量数据的处理只有借助高性能计算才能实现最佳的勘探效益,这也是在石油勘探领域高性能计算需求的主因。 由于石油勘探行业的特殊性和复杂性,石油勘探对高性能计算提出了非常苛刻的要求。过去十年中,石油勘探计算处理多采用大型机或高性能计算机,但目前高性能计算机系统在计算性能、系统建设与运行成本等方面已经面临着许多问题。让石油勘探企业感到颇为头痛的问题主要集中在三大困境:一是计算能力需求和CPU处理器性能落差越来越大,目前通过不断提高CPU处理器的工作频率来提高计算性能的技术路线已经逐步走向其极限;二是石油勘探高速增长的数据和存储扩容越来越不匹配;三是能耗制约越来越严重,高性能计算机的体积大、耗电多等弱点以及对庞大的计算机房空间需求、空调需求和用电量等已经成为石油勘探数据处理的一大挑战。 地震资料数据的大数据特征 BGP(中国石油集团东方地球物理公司)是中国石油天然气集团公司独资的地球物理专业化技术服务公司,主要从事陆地、浅海地震勘探采集、处理、解释及物探装备和软件研发,业务分布在全球34个国家,陆上地震勘探市场份额居全球第一位。现拥有2.6万员工,3000多IT人员和300多软件开发人员,在全球有23个处理中心,约9万CPU核和80万GPU核,运算能力约2PFlops,存储容量超过25PB。 责编:李玉琴 微信扫一扫实时了解行业动态 微信扫一扫分享本文给好友 著作权声明:畅享网文章著作权分属畅享网、网友和合作伙伴,部分非原创文章作者信息可能有所缺失,如需补充或修改请与我们联系,工作人员会在1个工作日内配合处理。 |
最新专题 |
|