医疗行业大数据应用的15个场景

来源:中国计算机报  
2012/2/23 13:03:56
商业推动了IT不断向前发展,云计算就是一个有趣的例子。甲骨文CEO拉里·埃里森曾经对近两年大行其道的云计算表示不屑,因为云计算并不是一项新技术。

本文关键字: 大数据
 
 
  付款/定价
 
  对医疗支付方来说,通过大数据分析可以更好地对医疗服务进行定价。以美国为例,这将有潜力创造每年500亿美元的价值,其中一半来源于国家医疗开支的降低。
 
  1.自动化系统
 
  自动化系统(例如机器学习技术)检测欺诈行为。业内人士评估,每年有2%~4%的医疗索赔是欺诈性的或不合理的,因此检测索赔欺诈具有巨大的经济意义。通过一个全面的一致的索赔数据库和相应的算法,可以检测索赔准确性,查出欺诈行为。这种欺诈检测可以是追溯性的,也可以是实时的。在实时检测中,自动化系统可以在支付发生前就识别出欺诈,避免重大的损失。
 
  2.基于卫生经济学和疗效研究的定价计划
 
  在药品定价方面,制药公司可以参与分担治疗风险,比如基于治疗效果制定定价策略。这对医疗支付方的好处显而易见,有利于控制医疗保健成本支出。对患者来说,好处更加直接。他们能够以合理的价格获得创新的药物,并且这些药物经过基于疗效的研究。而对医药产品公司来说,更好的定价策略也是好处多多。他们可以获得更高的市场准入可能性,也可以通过创新的定价方案,更有针对性疗效药品的推出,获得更高的收入。
 
  在欧洲,现在有一些基于卫生经济学和疗效的药品定价试点项目。
 
  一些医疗支付方正在利用数据分析衡量医疗服务提供方的服务,并依据服务水平进行定价。医疗服务支付方可以基于医疗效果进行支付,他们可以与医疗服务提供方进行谈判,看医疗服务提供方提供的服务是否达到特定的基准。
 
  研发
 
  医疗产品公司可以利用大数据提高研发效率。拿美国为例,这将创造每年超过1000亿美元的价值。
 
  1.预测建模
 
  医药公司在新药物的研发阶段,可以通过数据建模和分析,确定最有效率的投入产出比,从而配备最佳资源组合。模型基于药物临床试验阶段之前的数据集及早期临床阶段的数据集,尽可能及时地预测临床结果。评价因素包括产品的安全性、有效性、潜在的副作用和整体的试验结果。通过预测建模可以降低医药产品公司的研发成本,在通过数据建模和分析预测药物临床结果后,可以暂缓研究次优的药物,或者停止在次优药物上的昂贵的临床试验。
 
  除了研发成本,医药公司还可以更快地得到回报。通过数据建模和分析,医药公司可以将药物更快推向市场,生产更有针对性的药物,有更高潜在市场回报和治疗成功率的药物。原来一般新药从研发到推向市场的时间大约为13年,使用预测模型可以帮助医药企业提早3~5年将新药推向市场。
 
  2.提高临床试验设计的统计工具和算法
 
  使用统计工具和算法,可以提高临床试验设计水平,并在临床试验阶段更容易地招募到患者。通过挖掘病人数据,评估招募患者是否符合试验条件,从而加快临床试验进程,提出更有效的临床试验设计建议,并能找出最合适的临床试验基地。比如那些拥有大量潜在符合条件的临床试验患者的试验基地可能是更理想的,或者在试验患者群体的规模和特征二者之间找到平衡。
 
  3.临床实验数据的分析
 
  分析临床试验数据和病人记录可以确定药品更多的适应症和发现副作用。在对临床试验数据和病人记录进行分析后,可以对药物进行重新定位,或者实现针对其他适应症的营销。实时或者近乎实时地收集不良反应报告可以促进药物警戒(药物警戒是上市药品的安全保障体系,对药物不良反应进行监测、评价和预防)。或者在一些情况下,临床实验暗示出了一些情况但没有足够的统计数据去证明,现在基于临床试验大数据的分析可以给出证据。
 
  这些分析项目是非常重要的。可以看到最近几年药品撤市数量屡创新高,药品撤市可能给医药公司带来毁灭性的打击。2004年从市场上撤下的止痛药Vioxx,给默克公司造成70亿美元的损失,短短几天内就造成股东价值33%的损失。
 
  4.个性化治疗
 
  另一种在研发领域有前途的大数据创新,是通过对大型数据集(例如基因组数据)的分析发展个性化治疗。这一应用考察遗传变异、对特定疾病的易感性和对特殊药物的反应的关系,然后在药物研发和用药过程中考虑个人的遗传变异因素。
 
  个性化医学可以改善医疗保健效果,比如在患者发生疾病症状前,就提供早期的检测和诊断。很多情况下,病人用同样的诊疗方案但是疗效却不一样,部分原因是遗传变异。针对不同的患者采取不同的诊疗方案,或者根据患者的实际情况调整药物剂量,可以减少副作用。
 
  个性化医疗目前还处在初期阶段。麦肯锡估计,在某些案例中,通过减少处方药量可以减少30%~70%的医疗成本。比如,早期发现和治疗可以显著降低肺癌给卫生系统造成的负担,因为早期的手术费用是后期治疗费用的一半。
 
  5.疾病模式的分析
 
  通过分析疾病的模式和趋势,可以帮助医疗产品企业制定战略性的研发投资决策,帮助其优化研发重点,优化配备资源。
 
  新的商业模式
 
  大数据分析可以给医疗服务行业带来新的商业模式。
 
  1.汇总患者的临床记录和医疗保险数据集
 
  汇总患者的临床记录和医疗保险数据集,并进行高级分析,将提高医疗支付方、医疗服务提供方和医药企业的决策能力。比如,对医药企业来说,他们不仅可以生产出具有更佳疗效的药品,而且能保证药品适销对路。临床记录和医疗保险数据集的市场刚刚开始发展,扩张的速度将取决于医疗保健行业完成EMR和循证医学发展的速度。
 
  2.网络平台和社区
 
  另一个潜在的大数据启动的商业模型是网络平台和大数据,这些平台已经产生了大量有价值的数据。比如PatientsLikeMe.com网站,病人可以这个网站上分享治疗经验;Sermo.com网站,医生可以在这个网站上分享医疗见解;Participatorymedicine.org网站,这家非营利性组织运营的网站鼓励病人积极进行治疗。这些平台可以成为宝贵的数据来源。例如,Sermo.com向医药公司收费,允许他们访问会员信息和网上互动信息。
 
  公众健康
 
  大数据的使用可以改善公众健康监控。公共卫生部门可以通过覆盖全国的患者电子病历数据库,快速检测传染病,进行全面的疫情监测,并通过集成疾病监测和响应程序,快速进行响应。这将带来很多好处,包括医疗索赔支出减少、传染病感染率降低,卫生部门可以更快地检测出新的传染病和疫情。通过提供准确和及时的公众健康咨询,将会大幅提高公众健康风险意识,同时也将降低传染病感染风险。所有的这些都将帮助人们创造更好的生活。
共2页: [1]2 下一页
责编:赵龙
vsharing微信扫一扫实时了解行业动态
portalart微信扫一扫分享本文给好友

著作权声明:畅享网文章著作权分属畅享网、网友和合作伙伴,部分非原创文章作者信息可能有所缺失,如需补充或修改请与我们联系,工作人员会在1个工作日内配合处理。
最新专题
流动存储 为大数据而生

伴随信息技术的突飞猛进,更大量级的非结构化数据与结构化数据构成的大数据成为企业级存储所面临的最大挑战:一方..

磁盘阵列及虚拟化存储

利用数组方式来作磁盘组,配合数据分散排列的设计,提升数据的安全性。虚拟化存储,对存储硬件资源进行抽象化表现。

    畅享
    首页
    返回
    顶部
    ×
      信息化规划
      IT总包
      供应商选型
      IT监理
      开发维护外包
      评估维权
    客服电话
    400-698-9918