|
风往哪儿吹,通用GPU成就异构HPC潮流传统的HPC(高性能计算机)、超级计算机一般采用CPU构架,很少会使用到GPU。 本文关键字: GPU 传统的HPC(高性能计算机)、超级计算机一般采用CPU构架,很少会使用到GPU。而随着通用GPU(GPGPU)的出现,让这种传统架构正在被打破,通用GPU正成为并行计算系统的新的异构解决方案。 通用GPU崛起 最早提出通用GPU概念的是AMD,GPGPU(General Purpose GPU,通用计算图形处理单元)可以处理原本由CPU完成的处理任务,并且在某些方面可以做得更高效。这让HPC可更好的在几何造型、数值计算、流体模拟、三维重建、场景绘制、数据库操作等领域发挥作用。 2006年11月16日,AMD在Supercomputing展览会上推出了世界第一款专门针对企业高性能运算的汇流处理器Stream Processor,主要针对高性能运算系统设计,采用AMD CTM技术,可令运算效率大幅提高,可在财务分析、地震偏移分析、生命科学研究以及其它领域大展拳脚。AMD称,Stream Computing(汇流运算)可普遍应用在每秒数百次的3D绘图运算等大量并行运算处理上,能广泛应用在科学、企业及消费端运用面上大量的处理效能上,并相比使用传统处理器有更佳的效果,大幅节省企业花在计算这些复杂信息的运算时间。这是业界第一款通用GPU,也是首款针对企业空间提出汇流运算解决方案的硬件。 当然,要想通用GPU在超级计算领域走向普及,软件的支持必不可少。随着NVIDIA CUDA(Compute Unified Device Architecture)平台的推出,让通用GPU概念得以实用化。CUDA是用于GPU计算的开发环境,它是一个全新的软硬件架构,可以将GPU视为一个并行数据计算的设备,对所进行的计算进行分配和管理。其可更充分的发挥GPU的特点,在处理密集型数据和并行数据计算方面大显身手,这让CUDA非常适合需要大规模并行计算的HPC领域。 而随着OpenCL、Direct Compute的现身,则逐步将这类平台推向了高潮。OpenCL全称Open Computing Language,是第一个面向异构系统通用目的并行编程的开放式、免费标准,也是一个统一的编程环境,便于软件开发人员为高性能计算服务器、桌面计算系统、手持设备编写高效轻便的代码,而且广泛适用于多核心处理器(CPU)、通用处理器(GPU)、Cell类型架构以及数字信号处理器(DSP)等其他并行处理器,在游戏、娱乐、科研、医疗等各种领域都有广阔的发展前景。OpenCL是首个开放的免费通用并行计算标准,可统一管理一台主机的所有计算资源(含CPU、GPGPU),OpenCL可将这些资源统一看作计算单元,共同发挥运算能力完成各类计算任务。OpenCL统一编程环境,让开发者也能轻松利用异构平台写出高效的程序来。 微软在DX11中引入了通用计算接口标准Direct Compute亦值得关注,其在渲染架构中新增的Compute Shader,可更大限度发挥通用GPU的并行计算优势,将其应用范围从单纯的图形渲染拓展到更多计算领域,因此通用计算性能的高低将在今后成为衡量显卡整体性能的一部分。通过降低系统资源开销与提高效能,新的Direct Compute可让新一代显卡具有更强的通用计算效能。 这些开发平台的出现为GPGPU的规模化应用扫清了障碍,一些划时代的产品正在研制中或被推出。Intel、AMD皆为此孜孜不倦,而NVIDIA抢先推出的最新GPU“费米(Fermi)”则是这方面最具代表意义划时代的通用GPU产品,其双精度浮点计算性能的大幅度提升可更好满足当前工程领域高性能计算的需求。 责编:王立新 微信扫一扫实时了解行业动态 微信扫一扫分享本文给好友 著作权声明:畅享网文章著作权分属畅享网、网友和合作伙伴,部分非原创文章作者信息可能有所缺失,如需补充或修改请与我们联系,工作人员会在1个工作日内配合处理。 |
最新专题 推荐圈子 |
|