|
物联网高速公路上,快数据如何驱动分析大数据时代,快数据(fast data)有望给企业带来新的机遇。智能手机、传感器和社交媒体产生了上百亿个数据节点,如果你没有及时对这些数据节点以及物联网作出响应,那快数据带来的商机将与你擦肩而过。 零售业的高速发展为研究快数据理论、了解其获利能力提供了方便。但当考虑研究快数据为人们提供帮助时,没有哪个行业能比得上医疗行业,TIBCO的研究人员致力于构建快数据应用,从医院数字化设备产生的大量信息中发现潜在模式。 TIBCO的Been告诉我们:“我们的客户希望能将医疗设备产生的数据整合到一起,这样可以更早地诊断出疾病,更早地为病人提供正确的治疗方案,通过大数据技术挖掘数据中潜在的信息,了解疾病的传播,还可以通过对实时数据分析发现疾病的临床症状。” 虽然如今的Hadoop已成为大数据代名词,但Hadoop不可能解决一切大数据问题,尤其是针对快速数据来说。TIBCO对Hadoop就不太感冒,该公司的首席技术官Matt Quinn在公司上个年度用户会议上就告诫人们不要过分依赖“大象”——Hadoop。 Hadoop由于缺乏交互性和实时功能常常被人们抱怨,不过Hadoop也在努力地添加一些新的实时分析功能,也许将来Hadoop也能成为一个快数据平台,还有两个优秀的大数据技术也值得考虑——Apache Spark和Apache Storm。 Spark一直被看作MapReduce的替代者,获得了多方的追捧。Spark目前已成为Hadoop数据平台中重要的数据分析工具,相比MapReduce,Spark不仅更易于编写代码(支持Java、Python和Scala),而且速度更快,同时,Spark还为SQL(Shark)预先构建了hook函数,具有实时流媒体(Spark流)、机器学习(MLLib)和图处理(GraphX)等多种功能。 MapR作为Hadoop软件供应商,一直努力改进Hadoop技术以增强快数据的处理能力,MapR最近宣布了它与Databricks合作——将内存Apache Spark技术整合到Hadoop产品中,MapR的竞争对手Cloudera也将Spark加入了Hadoop中,Hortonworks则一直为Spark提供支持,预计在今年将为Spark提供全面的支持。 Storm在应对快数据处理方面具有优越的性能,使其具有很多追随者。很Spark一样,Storm为用户提供各类的语言支持,包括Ruby、Python、JavaScript、Perl、PHP。 LivePerson是一家使用Storm技术的公司,为用户提供基于Web的通信软件。在近期的一个视频中,Ido Shilon、LivePerson平台工程组的团队领导,解释了该公司如何重建其后端基础设施,以及如何使产品有更好的弹性等问题。 LivePerson实时系统的核心技术是Storm和Apache Kafka,还有Couchbase NoSQL数据库。作为其信息进程初始化的一部分,该公司致力于收集所有会话信息,比如网站用户来自哪儿,他们使用什么浏览器,他们访问过哪些页面等等,这些信息先通过Kafka流式处理,然后用Storm进行分析,最后以文档的形式存储在Couchbase数据库中。最终,这三款产品将构建出它们的“智慧库”,用于分析信息。 随着物联网的发展,应对快数据的困难将越来越大。物联网会给我们带来更多的快数据,机器产生的数据量会超出我们想象,而且这些数据既不直观也不易于使用,但这一切将为那些以数据驱动业务的公司带来更强的竞争力。谁先做好准备,谁就能在竞争中获得优势。 责编:李玉琴 微信扫一扫实时了解行业动态 微信扫一扫分享本文给好友 著作权声明:畅享网文章著作权分属畅享网、网友和合作伙伴,部分非原创文章作者信息可能有所缺失,如需补充或修改请与我们联系,工作人员会在1个工作日内配合处理。 |
最新专题 |
|