|
云计算:大数据时代的系统工程 “云计算”一词最早被大范围的传播应该是在2006年。2006年8月,在圣何塞举办的SES(搜索引擎战略)大会上,谷歌的CEO施密特(Eric Schmidt)在回答主持人提出的一个有关互联网的问题时说:“……现在出现了一种新的商业模式……人们还没有意识到这个机遇有多大。这种模式的前提是,数据服务的架构应该在他们称为‘云计算’的服务器上,即在某处的云里,如果你有合适的浏览器或接入方式,那么不论你有什么设备,你都可以访问这些数据。”电子工业出版社最新图书推荐《云计算:大数据时代的系统工程》。 很多事情在讲述的时候似乎很有意思,但当时经历的时候会让人觉得绝望。“大系统”的压力对于系统维护工程师而言,就是这样的事情。2000年初,笔者(注:此处指姚宏宇博士。)当时在雅虎公司编程之外做的最多的两件事,现在听起来或许还有些“土”:一件是组装机器,一件是维护机器,而这只是为了保证在足够多且可靠的硬件支撑下,业务系统能够有效应对不断快速增长的用户需求。在当时,笔者加班到晚上十点钟左右是常有的事,然后还要从加利福尼亚州的桑尼维尔(Sunnyvale)开车回家,再和朋友一起找地方吃饭。由于住的地方位于南圣何塞(South San Jose),附近是越南人聚集地,太晚的时间只有越南米粉(Pho)可以吃,于是以越南米粉果腹的时间持续有半年之久,以致现在对“牛肉粉(Beef Pho)”产生排斥感。吃完饭之后回去还要继续工作,凌晨两、三点才能睡觉。美股的开盘时间是东部时间9:30~16:00,这意味着在此之前必须保证交易网站服务的正常运行,所以必须每天早上6点准时起床,来检查系统的运行状态。很多人每天都会收到大量邮件,但早上刚起床就看到上万封邮件和几百条呼叫(Pager)信息,并且全部来自机器的情况并非人人都有体会,虽然是专职于此的技术人员,这种极大的压力状况还是很容易让人产生无力感,持续下去会有崩溃的感觉。怎么办?只有把雅虎财经频道大部分的底层代码进行重写,找回些生活。 现在看来,大量用户带来的大流量的压力,以及大系统的问题不仅对于每一个互联网公司来说仍然普遍存在,而且已经开始越来越多的出现在其他传统企业中。谷歌在1998年时的访问量约为每天1万次,但到2007年时,日访问量已达到5亿多次,机器数量也已经超过50万台。对于大多数互联网企业而言,虽然服务器规模不至于如此庞大,但随着用户规模的增加,少则数百台,多则上千台的服务器仍然对企业的运维管理能力提出了挑战。 对于企业来说,随着系统越来越大,维护人员却不能对应成比例增长——企业要考虑人力成本,还要顾及运维效率的问题——即便如此,雅虎在某一阶段有过半的成本都耗在旧有设备和系统的维护上,而无法把大部分资金投入到新业务的开发中。公司能创造新价值的部分越来越少,创新也越来越少,只能求变。 除了大规模系统的维护之外,海量数据的存储问题同样是互联网公司头疼的问题所在,随着网络技术和服务的快速发展,用户平均在线时间的延长和用户网络行为的多样化,导致各类数据在不断涌现,移动终端的出现更是扩充了网络服务的内容与范围,这些都大大增加了互联网公司需要承载的数据量。大量的用户数据对每一个公司而言都是宝贵的信息财富,但是如果只是购买邮箱存储设备一年就要花费几亿美金的话,每个CEO都会再权衡一下,于是雅虎后来有了Hadoop的研发。 因此,在流量和服务器数量都高速增长的情况下,“一个能够与网页增长速度保持同步的系统”[3]必不可少,这也是谷歌三篇有关分布式的论文*(注:这三篇论文分别是有关GFS(Google File System)分布式存储系统、MapReduce分布式处理技术和BigTable分布式数据库的论文,下文也有所提及。)之所以具有重要指导意义的原因——一切均出自实践。 随着信息经济的发展,许多传统企业现在也在加速向互联网化转型。最初存在于互联网企业的压力也出现于其他组织机构中,对大数据的管理和处理需求也在这些组织中产生。比如一个政府部门,如果考虑到信息中心和各垂直部门的信息资源,可能会有数千台服务器和数百套业务系统需要整合和管理,而且多数分布于不同的地理位置。如何对这些资源进行集中统一管理? 或许,这些组织也可以考虑选择云计算。 对于大多数中小型组织,甚至于个人而言,云计算的魅力来自那些灵活、弹性和随时随处可用的云计算服务,比如亚马逊的计算资源租用服务,或者一些针对企业和个人的“云存储”服务。这些服务是大多数人与云计算最直接的接触,也形成了他们对云计算的直观认识。但是我们知道,云计算应该包含两方面的内容:服务和平台。云计算既是商业模式,也是技术。 责编:Mirror1210 微信扫一扫实时了解行业动态 微信扫一扫分享本文给好友 著作权声明:畅享网文章著作权分属畅享网、网友和合作伙伴,部分非原创文章作者信息可能有所缺失,如需补充或修改请与我们联系,工作人员会在1个工作日内配合处理。 |
最新专题 推荐圈子 |
|