|
第四方物流的分布式数据挖掘系统研究4 基于分布式数据挖掘系统第四方物流的业务流程 第四方物流汇集了众多存储、运输、第三方物流服务提供商等合作伙伴,因此在第四方物流的决策中,如何集成、合理分配物流资源,如何充分利用合作伙伴已有的历史运营数据成为关键的问题。 把分布式数据挖掘系统应用到第四方物流的决策支持中,可以整合已有物流系统中的异构数据,挖掘出蕴含在历史运营数据中的决策知识,并能够保证数据的安全性,为物流方案的整合设计提供强大的支持,提高第四方物流业务流程的科学性。基于分布式数据挖掘系统的第四方物流业务流程如图2所示。 图2 分布式数据挖掘系统下的第四方物流业务流程 第四方物流的业务流程中关键的是汀单接收以前的可行性分析及效益分析和在物流方案实施之前的优化决策,下文将讨论在这两个关键步骤如何利用分布式数据挖掘提供决策支持。 4.1 可行性分析及效益分析 一方面决策者使用4PLDDM应用程序中客户评价模块,应用数据挖掘中的分类算法在各处第三方供应商物流服务记录中挖掘特定客户的信用类型;另一方面,决策者将汀货的具体内容输入到效益评价模块中,应用神经网络0M遗传算法来分析此类货物运输的收益及风险度;最后分析自身的能力,确定是否拥有或控制合适的运输载体,是否拥有可供选择的第三方物流供应商,从以上各个方面来考虑是否接订单。 4.2 优化决策 要在满足客户要求的前提下进行优化决策,达到自身效益最大。优化决策中涉及路径优化选择、运输载体选择、第三方物流供应商评价及选择、效益综合评价。 在每个优化选择中,决策者把目标提交给对应的应用程序模块,应用程序模块在业务逻辑分析基础上动态调度挖掘协调器,由分布式数据挖掘组件在第三方物流信息系统中应用数据挖掘算法挖掘出相应的知识模式,如第三方物流供应商的分类模式等,以此采指导优化决策。 5 总结与展望 第四方物流是一种介于制造企业和运输企业之间的电子物流服务平台,同时也是链式管理的结合体,其通过Internet的技术支持,使“全球贸易网络”成为可能。第四方物流最大的特点是对物流资源进行整合,实现资源的最合理分配,节约成本。如何从异构的信息系统中分析数据成为一个关键的问题,本文提出了第四方物流分布式数据挖掘系统及部分技术实现,解决了数据挖掘中的数据安全性和保密性等问题,设计了在分布式数据挖掘基础上第四方物流的业务流程,大大改进了第四方物流决策的正确性和可靠性。未来几年,我国将成为全球制造基地,迫切需要建立与之配套的强大的物流配送体系。文中提出的分布式数据挖掘的第四方物流系统将在物流配送体系的决策系统中发挥巨大的作用。 责编:姜玲 微信扫一扫实时了解行业动态 微信扫一扫分享本文给好友 著作权声明:畅享网文章著作权分属畅享网、网友和合作伙伴,部分非原创文章作者信息可能有所缺失,如需补充或修改请与我们联系,工作人员会在1个工作日内配合处理。 |
更多最新文章 |
|