|
谈CRM的系统数据质量管理在企业部署CRM系统后,往往希望借助这一系统的商业智能优势,通过对数据的分析处理,来获取隐含在数据中的更有商业价值的知识,以此来指导企业开展下一阶段的工作。 2.1数据质量规划阶段 完整的信息架构在数据质量管理中占据着重要的位置,这个架构一定是针对业务规则建立的,且能够灵活应对将来可能出现的业务规则或数据流变更。 信息,简要的说就是数据和知识。信息架构的工作在本质上就是将一些数据转化为我们可以直观的理解的知识,或者将我们获得的知识转化为数据,一边可以传递,再利用。它应当是兼具两者的设计过程。大体上应该包含三件工作: ①架构设计:首先我们要确定系统中信息的单元的大小,并决定这些单元之间的关系。 ②组织方式:将这些组件组合成有意义的,具有特色的类别。也称为逻辑分类。 ③标记:将上一步得到的分类用一个唯一的标签来命名。 设计过程的初期要通过有引导性的客户调研工作理解用户需求,寻找分类的趋势,完成信息架构UML图的初稿,这里应该进行至少两次的分别从上到下和从下到上的梳理过程。之后就是情景模拟的测试过程,并且要让用户也参与进来,否则这个测试过程就失去了其本身的意义。企业的信息化过程中要引入数据质量管理平台,以管理企业数据流,并成为企业各个子系统数据交互的中心,同时在各个层次上对数据质量进行监控和管理,以建立统一的企业数据模型,形成企业统一的视图。 信息的安全性管理不但包括我们熟知的密码管理,用户权限分配,服务器端防火墙的设置等网络安全工作,还应特别注意外部数据的来源,是否为可信数据,数据质量是否符合系统的标准,此处要对导入程序做严格的检查,宁肯放弃一部分数据也不能导入潜在的脏数据或无效数据。 2.2数据质量控制阶段 设计质量,即我们上面所说的质量规划阶段,其目的是要收集质量需求并将它们转换为一套标准来执行。接下来的执行过程中,就存在着数据质量控制的问题。上面一节已经讲过当前常用的评价数据质量的观察点,在本项目中,宏观上从三个方面来看:可信性、及时性、可用性。 检测数据可信性的一系列规则都是要基于依赖性和现实世界的一致性的。他们可以用于定义数据的语义约束;区分静态,暂时的,或是动态的约束;并且可以指定属性、原则、关系或是整个数据库。所有这些类型的约束都是在假设数据的某些性质不依时间的变化而变化为基础上提出的,以便提供一个稳定的数据集用来与其他数据作对比。 责编:李代丽 微信扫一扫实时了解行业动态 微信扫一扫分享本文给好友 著作权声明:畅享网文章著作权分属畅享网、网友和合作伙伴,部分非原创文章作者信息可能有所缺失,如需补充或修改请与我们联系,工作人员会在1个工作日内配合处理。 |
|
|