百度余凯:大数据人工智能

来源:CSDN  
2015/1/6 9:17:03
2014中国大数据技术大会首日全体会议上,百度研究院副院长,深度学习实验室主任,图片搜索部高级总监余凯发表演讲“大数据人工智能”。对互联网公司来说最重要的是读懂人心,最重要的技术是基于大数据的人工智能。

本文关键字: 百度 大数据 人工智能

学习的能力是智能的本质

那么什么是人工智能?应该包括哪几个方面,比如我们看到的机器人,首先他有眼睛,有感觉,能感知环境是怎么样,完成它任务怎么样做,通过感知把数据记录下来以后,要做思考,想想怎么做,后面你就可以行动。所以,感知、思考和控制是人工智能几个重要的方面。

我们看到很多科技公司推出各种各样的产品,比如说我们看到有智能手机、智能水杯、智能手环等等,还有百度推出的智能快搜,谷歌在做的智能汤勺,但是真正想一想这些产品是不是真的具有智能呢?我们把这些产品和60、70年代的老式收音机放在一边,他们的不同在什么地方?思考这些问题能帮我们想清楚未来方向,也可以区别现在的这些产品它到底是不是真的智能。真正的智能系统应该能随着经验演化越变越聪明,学习的能力,是智能的本质!

经验就是数据

那么什么叫经验?经验就是数据,所以我们到今天看到一个振奋人心的时代来临,这也是我们济济一堂来到这个会议的原因,这个时代是什么?就是大数据时代。

从万物互联到万物智能

今天在座每一位可能都跟我一样,身上带了至少两三个移动设备,平均每个人连到两到三个设备。半个多月前,在乌镇孙正义有一个更加疯狂的预测,预测2020平均每个人要连接到一千个设备,一千个设备包括你随身带的设备,你的wifi,甚至是监控摄像头。在移动互联网时代,我们看到的未来是万物互联,人跟环境,人跟物,物跟物之间都会发生连接。这种连接同时也意味着数据爆增,到达前所未有的广度和数量,大数据的时代使我们从万物互联到万物智能。

深度学习与大数据

很多拥有大数据的互联网公司,包括谷歌、脸谱和百度,都在成立研究机构,这个机构机构最主要的研究方向就是大规模的深度学习,聚焦点就是大数据驱动的人工智能。在百度内部,一个横跨各个产品线大项目获得了今年的百度最高奖,这个项目就是百度大脑。拥有上千台PC服务器,和将近1000台GPU服务器,构建了世界上规模最大的深度神经网络,百亿级的参数。我们基于这些基础设施,去研发世界上最先进的深度学习算法,包括语音识别、图像识别、自然原理理解、广告竞争匹配、广告建模等等。

深度学习其实它不是一个新事情,在30年前80年代末的时候,深度学习就已经是得到了广泛关注,而到了大数据时代的今天,它获得了更多的成功和影响力。为什么呢?

● 第一方面,深度学习模拟了大脑的行为。一开始做深度学习这帮人,他们的想法受到卷积神经系统网络的影响,在80年代受到了神经科学家对于视觉神经系统理解的影响;

● 第二,从统计和计算的角度来看,深度学习特别适合大数据;

● 第三,深度学习是End-to-end学习;

● 第四,深度学习提供一套建模语言。

大数据时代传统深度学习的误区

我具体给大家讲讲第二点,深度学习特别适合大数据下。在统计上面分析机器学习系统效果时,一个最根本的角度叫推广误差,推广误差可以帮助我们找到误差来源,从而设计出更好的算法。一个经典的分解方法,把推广误差分解成两部分:

Approximation error:数学模型不完美导致的误差;

Estimation error:数据不完美,比如数据有限或数据有偏,导致的误差;

Optimization error:算法不完美导致的误差。

随着数据规模的扩大,从推广误差的角度来说,传统的深度学习研究中存在着一些误区:

从Approximation error的角度来说,过去我们认为简单的模型就是好的,但实际上简单的模型是不够好的,随着机器的增多,参数越来越多,模型越来越复杂,是大趋势,过去认为简单的模型是好的这是错误的观念;

从Estimation error的角度来说,为了保证数据的精确,应该收集充分的数据;

责编:李玉琴
vsharing微信扫一扫实时了解行业动态
portalart微信扫一扫分享本文给好友

著作权声明:畅享网文章著作权分属畅享网、网友和合作伙伴,部分非原创文章作者信息可能有所缺失,如需补充或修改请与我们联系,工作人员会在1个工作日内配合处理。
畅享
首页
返回
顶部
×
    信息化规划
    IT总包
    供应商选型
    IT监理
    开发维护外包
    评估维权
客服电话
400-698-9918