数据分析在互联网金融风险管控的应用

来源:畅享网  
2014/2/24 11:44:04
JMP,作为SAS推出的一种交互式可视化统计发现软件系列,在SAS算法的基础上,强调以统计方法的实际应用为导向,交互性、可视化能力强,使用方便,给业务人员的数据分析极大的帮助,下面我们就以风险管控的数据分析应用来进行展示。

运用数据分析的各种手段,将帮助我们更好的认识产品、客户和业务流程,更好的做好风险管控。但就数据分析本身来说,数据分析是一项严肃认真的专业性工作,工作对于参与的人员和环境都有着较高的要求,而互联网金融行业本身正处于快速发展的事情,也增加了数据分析工作的难度。因此,如果能够借助使用便捷、安全准确的分析工具将对数据分析产生极大的帮助,对风险管控起到重要的作用,而这些又对数据分析工具提出了更高的要求:
 
1)准确快速的数据分析能力,准确是数据分析的根本要求,只有准确分析的结果,才能为后续的工作提供正确的参考。
 
2)开放的大数据处理能力,互联网金融面临的是开放的互联网环境,我们将面临的是大数据,对于开放环境下的大数据处理能力,也是数据分析能正常工作的重要保证。
 
3)快速便捷的模型构建能力,数据建模本身是一件计算量繁琐的专业工作,对于专业要求高,而大部分风险管控人员往往并不具备较强的专业知识背景,这就需要分析工具能够提供便捷的模型构建能力,帮助用户实现快速准确的模型构建。
 
4)操作友好的交互能力,数据分析本身是一个充满无知的探索性工作,很多结果结论都是在探索的过程中被发现的,所以操作友好的交互能力,也会为我们的数据探索提供更多的便利。
 
JMP,作为SAS(全球最大的统计学软件公司)推出的一种交互式可视化统计发现软件系列,在SAS算法的基础上,强调以统计方法的实际应用为导向,交互性、可视化能力强,使用方便,给业务人员的数据分析极大的帮助,下面我们就以风险管控的数据分析应用来进行展示。
 
探索性数据分析
 
当我们从互联网上获取到获取大量数据的时候,由于对数据本身缺乏了解,因而难以进行常规的数据分析,而探索性数据分析(EDA: Exploratory Data Analysis)能够在这种情况下,通过同用户的不断交互,不断探索,帮助我们获取到有用的相关信息。
 
探索性数据分析是启发式、开放式和完全动态的,它以数据为基础,通过对数据的分解、过滤和计算等操作,帮助我们运用多种可视化的方法实现“让数据说话”。JMP中的交互式图形和数据管理工具是非常理想的探索性数据分析工具。更值得一提的是,即使面对的是海量数据,也不论数据中隐藏着何种信息,JMP特别的“In-memory”架构也能够非常敏捷地对指令做出反应,使数据探索过程充满乐趣。
 
图1:探索性数据分析
基于实验设计的产品设计
 
金融产品的风险和收益都受到诸多因素的影响,如何正确的认识这些因素,准确的度量这些因素的影响力,将为我们进行产品的设计和基于市场动态进行产品调整提供巨大的帮助。JMP 为用户提供完全析因、筛选、响应曲面和田口设计表等经典的实验设计模型。帮助用户在定义因子和响应之后,自动的进行试验模型的选择,并提供的一系列设计评估工具,例如预测方差刻画和 FDS 图,帮助用户进行模型评估,确保实验设计的正常性。此外,JMP还在构建好模型之后,通过各个刻画器,以可视方式帮助我们确定可行的操作架构和因子设定点。一旦找到最佳点,就可使用集成的 Simulator 来了解其在实践中的可靠性。
责编:王雅京
vsharing微信扫一扫实时了解行业动态
portalart微信扫一扫分享本文给好友

著作权声明:畅享网文章著作权分属畅享网、网友和合作伙伴,部分非原创文章作者信息可能有所缺失,如需补充或修改请与我们联系,工作人员会在1个工作日内配合处理。
畅享
首页
返回
顶部
×
    信息化规划
    IT总包
    供应商选型
    IT监理
    开发维护外包
    评估维权
客服电话
400-698-9918