|
BI与搜索技术的融合是“门户当道”?有价值的信息分散在企业的各个角落里,这是信息管理领域早已公认的事实,同时也是多年来未被攻克的一个大难题。 融合的高难度 BI与搜索技术融合的构想一经提出,就被寄予了厚望。人们希望这种融合能够解决那些长期悬而未决的问题。以Google OneBox为代表的企业级搜索产品的成熟更是让BI行业发生了很多改变,但我们也必须正视这一领域所面临的困难。 传统BI所实现的结构化数据搜索无法向用户提供上下文关联信息。比如,用户可以打开一 个库存数据库,但是却无法获得数据库之外像货品照片、库存位置地图等关联信息。有专家表示,这样的问题最终会通过元数据搜索的介入而得到解决,就像在数据库领域XML所获得的成功一样。但是在目前,海量的结构化数据与非结构化数据的结合仍是一个难题。 非结构化数据搜索的挑战在于,如何驾驭如此庞大、高容量的文档信息。以一个拥25000名员工的企业为例,每个员工每个工作日处理70封邮件,那么该企业每年出于法规遵从目的需要存储的邮件数量就达5亿封,还要保证这些邮件是可搜索的。加上其他需要存储和搜索的HTML、Word、EXCEL、PPT文档,搜索指令仿佛“大海捞针”。 作为一位资深BI人,神州数码移动事业部的刘庆认为,BI与搜索的融合不是单纯易用性的改进,需要解决的关键问题包括实施成本、技术标准化等。他表示,在2006年曾经有国内的企业有意尝试企业文档的搜索,但真正把搜索系统与BI系统结合起来的用户很少。“两年之后,我们可能会看到比较成功的案例,而BI与搜索的深度融合可能要在5年以后。”刘庆说。 虽然现有的解决方案已经能够支持企业对BI与搜索系统的同步部署,但刘庆强调,分步实施仍是最佳选择。“实施者需要协调BI和搜索的部署特性,BI项目强调以客户应用为中心,而搜索强调技术标准化,在技术融合过程中需要加以调和。同时还应该考虑好系统集成之后推什么应用,是报表还是数据钻取?对客户而言,现实的做法是先把BI系统做好,这样搜索才有价值。”他说。真正的融合应该是无缝的,BI与搜索在现阶段的融合表现显然距离这一标准还有很大距离。 其中,结构化和非结构化数据搜索怎样自然结合是症结之一。SAS的张天峰在BI行业拥有近15年的从业经历。他表示,结构化和非结构化信息的搜索技术是截然不同的,非结构化搜索的技术也有进一步的细分。非结构化数据搜索应该被更加准确地定义为文件检索技术,包含检与索两个方面。检就是文档归类,在这一领域,SAS等厂商所提供的文本挖掘(Text Mining)技术正趋向于成熟;索就是搜索,目前最成熟的是以Google为代表的蜘蛛(Spider)技术。 “企业实施‘BI+搜索’项目的难点体现在,如何把两种不同的技术自然地‘缝合’起来。开发人员必须熟练掌握这两种技术,目前,同时掌握两种搜索技术的人才并不多。同时,要完整呈现不同层面、种类的关联信息,并做出科学的决策,这需要大量的定制开发工作,在目前的情况下实施难度还很大。这些都决定了BI与搜索结合尚不自然的现状。”张天峰说。 门户当道 尽管推进困难重重,但BI与搜索的融合已成一个明确的技术方向。在BI领域,搜索技术炙手可热。Gartner的一位分析师说:“从没见过BI厂商如此急切地寻找搜索技术,今天不会向你谈论其BI软件与企业搜索产品集成的BI厂商是太少见了。”另一方面,搜索厂商也在积极拓宽企业级搜索引擎的覆盖范围,企业BI系统中高质量的结构化数据正好弥补了其搜索的数据源。因此,无论是BI厂商还是搜索厂商,都在寻找合适的落脚点,企业门户正是这样一个能够兼顾双方利益、兼容不同技术框架的战略选择。 “应该说,目前市场上我们所见到的‘BI+搜索’的产品基本上都是围绕门户展开的”张天峰说。文章前面提到的产品大都集中在门户和内容管理方面,在门户平台之上,结构化与非结构化数据搜索、乃至更高层次的信息检索技术形成了多种集成化的解决方案。 在结构化数据的语义关联方面,一些BI软件已经通过模板的使用和数据关联定义等方法,部分地解决了在结构化数据查询中提供上下文关联信息的问题。以此为基础,一些企业级搜索引擎,比如Google、X1,可以将检索出的结构化数据交付BI系统,然后将其结果与自身的搜索索引项建立联邦性的关联。与此同时,BI厂商也在不断强化数据的挖掘和定向交付能力。比如Information Builders支持从流程交易环节获取数据,并且使之对Google企业搜索引擎可用。 而在目前,面向结构化和非结构化数据查询结果的联邦技术有望成为BI与搜索技术融合的一个关键部件。 安全与算法问题 在技术演进带来搜索容量提升、BI软件覆盖范围扩大等可喜成果的同时,信息安全问题更加无法逃避。当企业的IT部门在企业范围内部署了搜索工具,并使之与BI决策分析系统连接起来,数据泄漏的风险随之陡然增大。BI分析与搜索功能集成后,企业员工将获得更多的数据查询途径,但跨系统数据的访问控制问题也随即出现。人们发现,为不同部门、级别的员工在这个集成化的系统中定义权限并不容易。 其实,在BI领域,访问控制机制是非常成熟的。目前最需要解决的问题是,如何保证BI与搜索集成之后的系统能够交付员工需要的所有数据。同时准确地屏蔽那些机密的、不在权限允许的范围之内的数据。有安全专家认为,在理想的技术框架下,单点登录(SSO)技术可以解决向员工交付所需完整数据的问题,LDAP访问目录服务器可以解决访问权限控制的问题。但在实际部署时,数据泄漏的问题仍然会在执行环节出现,系统中的很多数据所接受的访问控制并没有被企业范围的访问机制所严格限制。 一些“BI+搜索”解决方案简单地在BI包后面或其他的后端应用中添加用户信任机制,并且依赖这些应用内置的访问机制去限制反馈结果。这种做法显然不够全面,在实际部署时,企业安全策略的调整,在BI系统中搜索引擎添加位置的选择,都是访问控制环节需要关注的细节问题。 在参与技术融合的问题上,每个厂商都是自己的切入角度,而这往往是基于其专有技术的。这在一定程度上导致了目前这个领域所展开的技术研发并不是非常秩序化的,正如前面提到的技术标准化问题。今天,厂商之间已经围绕搜索运算法则展开了较量。 Google一直努力在企业级搜索领域确立如Web搜索世界中的“权威”地位,并表示不会公开自己的算法。而IBM则宣称新推出的基于企业搜索引擎内部相关权重因子的新算法。有关的因子包括客户点击特性、格式、文档进入位置、元数据等。很多产品还提供增强特定文档或URL相关性的方法,以便他们在既定搜索中占据首位。针对企业搜索的特性,一些软件还允许企业针对某些特定术语进行个性化定制,以方便企业实现对关键业务词汇的定向搜索。“在这个领域,你会遇到各式各样的问题,它们与Web搜索有很大不同。比较幸运的是,在这里你至少不会遭遇到有些企业利用卑鄙的手段欺骗你的算法的情况。"Google企业级产品部门的一位负责人风趣地说。 责编:穆琳琳 微信扫一扫实时了解行业动态 微信扫一扫分享本文给好友 著作权声明:畅享网文章著作权分属畅享网、网友和合作伙伴,部分非原创文章作者信息可能有所缺失,如需补充或修改请与我们联系,工作人员会在1个工作日内配合处理。 |
热门博文 |
|