|
基于数据仓库模型的运营分析系统企业要想通过信息化的手段,按照需求以全方位、精确粒度来分析自身生产、经营的情况,数据仓库是一个行之有效的方法。 2、系统的多维度数据模型 多维度结构模型是基于多张维度表和一张事实表的星型模型结构,如图2所示。每个维度表存放的是按属性分类的维成员。如时间维度表中的时间维成员有:2009年、2008年、2007年... ...组织维度表中的组织维成员有:销售部、国际业务部... ...往来单位维度表中的维成员有:客户A、客户B、客户C... ...那么在指标事实表中的数据就可以查询到如“2008年国际业务部与客户A所签的订单额度”、“2009年销售部与客户C所签的订单额度”、“2009年所有部门与所有客户所签的订单额度”... ... 每个维度表的主键构成了事实表的外键,这样的结构保证事实表中存在每个维度的每个维成员组合的数据。我们可以把事实看成是各个维交叉点上的值。 图2 多维度数据模型 我们把业务系统中待分析的数据归类,每一类称为一个“指标”。如销售收入、成本总额、应收账款都是指标,指标之间大多数没有彼此的关联,但有一类指标是需要通过其它指标的公式计算得到数据值的,如主营业务利润率=主营业务利润/主营业务收入*100%。所以我们把指标分为非计算类指标和计算类指标两大类。而非计算类指标的数据值来源于业务系统。 3、运营分析系统的设计 (1)ETL数据抽取、转换、装载模块的设计 系统设置自动的数据库任务,定时的执行存储过程(或者通过定时启用JAVA的线程)将外部业务系统中的数据写入到每个指标的中间表中。 (2) 基础数据定义模块的设计 数据仓库的建模需要根据基础数据的定义模块的相关数据,由指标与维度的关联可以动态生成每个指标的维度表;由指标与维成员的关联可以生成每个指标维度表中的数据;由每个指标的维度表可以动态生成其事实表。 (3) 数据查询与分析的设计 数据的查询与分析其实是对所有指标在多维度模型上的一个展示。包括某个指标在同一个维度的不同层次的维成员上做“上卷”、“下钻”的查询操作、某个指标在某年度的指标值进行“同比”、“环比”的查询操作。此外,针对分析查询的结果,系统支持多维度报表的生成、打印等功能。 运营分析系统为企业的中高层管理者提供及时、全面、详细的综合数据分析,解决了企业管理者以灵活的方式从各个角度全方面的了解企业生产运营状况的需求,提高了其决策的效率,降低了分析的成本,反应了企业存在的问题,为企业的决策层分析企业经营状况,制定战略计划,以及考核体系提供最全面的分析结果,为今后企业的发展方向与领导的决策提供了准确的数据依据。 ——北京机械工业自动化研究所 研发部 陈程 责编:姜玲 微信扫一扫实时了解行业动态 微信扫一扫分享本文给好友 |
热门博文 |
|