基于数据仓库模型的运营分析系统

  作者:北自所
2009/9/1 13:29:06
企业要想通过信息化的手段,按照需求以全方位、精确粒度来分析自身生产、经营的情况,数据仓库是一个行之有效的方法。

本文关键字: 数据仓库 运营分析系统

    进入21世纪,信息科技迅猛发展,市场瞬息万变,企业要想在激烈的市场竞争中立于不败之地,就需要对客户和市场的信息做出快速、及时的搜集与响应,同时对自身的运营状况也要做出全面的预测与分析。企业要想通过信息化的手段,按照自身的需求以全方位、精确的粒度来分析自身生产、经营的情况,使用数据仓库是一个行之有效的方法。

    数据仓库是一个面向主题的(Subject Oriented)、集成的(Integrated)、相对稳定的(Non-Volatile)、反映历史变化(Time Variant)的数据集合,用于支持管理决策(Decision Making Support)。

    面向主题:操作型数据库的数据组织是面向事务处理任务,各个业务系统之间各自分离,而数据仓库中的数据是按照一定的主题域进行组织的。

    集成:数据仓库中的数据是在对原有分散的数据库数据抽取、清理的基础上经过系统加工、汇总和整理得到的,必须消除源数据中的不一致性,以保证数据仓库内的信息是关于整个企业的一致的全局信息。

    相对稳定:数据仓库所涉及的数据操作主要是数据查询,一旦某个数据进入数据仓库以后,一般情况下将被长期保留,也就是数据仓库中一般有大量的查询操作,但修改和删除操作很少,通常只需要定期的加载、刷新。

    反映历史变化:数据仓库中的数据通常包含历史信息,系统记录了企业从过去某一时点(如开始应用数据仓库的时点)到目前的各个阶段的信息,通过这些信息,可以对企业的发展历程和未来趋势做出定量分析和预测。

    1、系统软件平台及构造

    (1) 软件平台

    软件主要包括前台展现页面、WEB应用程序服务器、后台数据库系统。其中前台展现页面是基于B/S架构的JSP页面;WEB应用服务器使用IBM公司的WebSpere Application Server;后台数据库使用Oracle 10g。

    (2) 系统结构

    下图展示了基于数据仓库模型的运营分析系统的体系结构:其中ETL包括:数据抽取、转换、清洗、过滤、装载这几个步骤,业务数据经过ETL的过程,以另一种方式存入一个逻辑上独立于业务系统的新数据库中。这个数据库对业务系统是完全封闭的,并且是按照待分析的指标存放在多个类似于“数据集市”的多个表中。基于海量的分析数据,我们按之前设定好的参数来进行数据仓库模型的建立,也就是所谓的“多维度”的数据模型,模型建立好以后,就可以在模型框架的基础上进行多角度的海量数据的查询分析。

    图1 运营分析系统解决方案的体系结构

    结构特点:

    ① 独立性

    该系统和外界的业务系统是完全独立的、不依赖于某种特定的业务系统而存在的。数据的抽取实际上是实现和外部业务系统的数据接口,而接口是可以由多种方式来实现的,如数据库后台的存储过程、JAVA程序等。

    外界业务系统数据的变化也不会实时的、直接的影响到分析系统的数据,分析系统反应的只是某一个时点上业务数据的情况。

    ② 安全性

    由于系统数据存放在独立于外部业务系统的数据库中,拥有外部业务系统访问权限的用户不一定可以访问分析系统。系统通过基础数据定义中角色的授权来控制访问、查询分析分析数据的权限。对于后台存储的数据也进行了加密的处理。

共2页: 上一页1 [2]
责编:姜玲
vsharing微信扫一扫实时了解行业动态
portalart微信扫一扫分享本文给好友

畅享
首页
返回
顶部
×
    信息化规划
    IT总包
    供应商选型
    IT监理
    开发维护外包
    评估维权
客服电话
400-698-9918